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Abstract
Several measures of entanglement have attracted considerable interest in the
relationship of a measure of entanglement with other quantities. The dynamics
of entropy, energy and negativity is studied for Fermi-resonance coupled
vibrations in substituted methanes with three kinds of initial mixed states, which
are the mixed density matrices of binomial states, thermal states and squeezed
states on two vibrational modes, respectively. It is demonstrated that for mixed
binomial states and mixed thermal states with small magnitudes the entropies of
the stretch and the bend are anti-correlated in the same oscillatory frequency,
so do the energies for each kind of state with small magnitudes, whereas
the entropies exhibit positive correlations with the corresponding energies.
Furthermore, for small magnitudes quantum mutual entropy is positively
correlated with the interacting energy. Analytic forms of entropies and energies
are provided with initial conditions in which they are stationary, and the
agreement between analytic and numerical simulations is satisfactory. The
dynamical entanglement measured by negativity is examined for those states
and conditions. It is shown that negativity displays a sudden death for mixed
binomial states and mixed thermal states with small magnitudes, and the time-
averaged negativity has the minimal value under the conditions of stationary
entropies and energies. Moreover, negativity is positively correlated with
the mutual entropy and the interacting energy just for mixed squeezed states
with small magnitudes. Those are useful for molecular quantum information
processing and dynamical entanglement.
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1. Introduction

In recent years, quantum entropy has been studied extensively due to its central role in quantum
information theory [1]. In a typical scenario, the partial entropy of a bipartite system has been
discussed in various subjects such as in two-mode Bose–Einstein condensates [2–5] and two
stretching vibrations in small polyatomic molecules [6]. One of the important properties in
the former cases [2–5] is that the model parameter can be varied for many behaviors of the
von Neumann entropy or the linear entropy. Hence, the maximal entropy can be achieved
with nonlinear interactions [5]. It is shown that the von Neumann entropy can be taken as
an indicator of normal-to-local transitions in molecular vibrations [6]. Those studies [2–6]
concentrate on the linear entropy and the von Neumann entropy for a pure state in an integrable
quantum system with 1:1 resonance coupling between two modes.

In the present work we will investigate not only the entropy of an individual subsystem but
also the entropy correlations between the two subsystems for three kinds of mixed states in an
important spectroscopic Hamiltonian based on experimental spectra of substituted methanes,
where the bending and the stretching modes are coupled by 2:1 Fermi-resonance. This
resonance was named after Fermi [7] since he initially introduced it for the description of
an anomalous infrared spectrum of CO2, in which the symmetric CO stretching mode is
strongly interacted with the first overtone of the O–C–O bending mode. Fermi-resonances are
nowadays playing a remarkable role in the understanding of complex experimental situations
[8–12] as well as in the mechanism of intramolecular vibrational energy redistribution [13].
In addition, the targeted energy transfer by Fermi-resonance or harmonic resonance in a pure
theoretical model for two nonlinear oscillators has been studied in classical and quantum
mechanics [14], where analytic conditions for complete energy exchange are explicated for
an initial pure state. Here we study the energy of each vibrational mode and the correlations
between entropy and energy for mixed states in substituted methanes.

On the other hand, there are various measures of entanglement in the literature. Negativity
based on the Peres–Horodecki criterion [15] is an entanglement monotone [16], and it
serves as an upper bound of quantum teleportation capacity [16]. The physical meaning
of negativity is, however, not transparent in general for its abstract mathematical definition.
Recent attention has been paid to the relationship of negativity with other quantities [17, 18,
20–23]. The analytical expression of maximal entanglement versus entropy shows that the
forms of maximally entangled mixed states can change discontinuously at a specific value of
von Neumann entropy for mixed states in two-qubit systems [17]. A relationship between
negativity and uncertainty products has been constructed for asymmetric two-mode Gaussian
states [18]. For a mixed state in qudits the entanglement of formation [19] is anti-correlated
with the participation ratio defined by 1/Tr(ρ2) for a density matrix ρ, whereas it is strongly
correlated with negativity [20]. A comparative study of the relative entropy and negativity
for two-qubit pure and mixed states demonstrates that there are mixed states exhibiting the
relative entropy for a given negativity in some range higher than for pure states [21]. The
entanglement dynamics of a mixed state has been discussed for other models [22, 23]. It
is shown that some factors including entanglement, classical correlations and entropy affect
the time evolution of mixed states in a bipartite two-level system with two spins in magnetic
fields [23]. It is thus of interest to explore the dynamics of negativity and its correlations with
entropy and energy for mixed states in substituted methanes from experimental spectra.

This paper is organized as follows. Section 2 presents the Hamiltonian for anharmonic
vibrations based on experimental spectra of substituted methanes. Section 3 is devoted to
calculating the von Neumann entropy and the energy of the stretching (bending) mode for
three kinds of initial mixed states. Thereby the dynamical correlations among entropies and
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Table 1. Fit parameters (cm−1) in the spectroscopic Hamiltonian.

ωs ωb Xss Xbb Xsb Ksbb

CHD3 3047.04 1293.35 −55.91 −4.49 −22.12 −25.84
CH(CF3)3 3042.8 1356.4 −56.9 −0.32 −14.0 −65.5
CHCl3 3093.8 1235.6 −63.7 −15.6 −21.2 −71.1
CHF3 3079.8 1377.8 −61.7 −6.5 −28.6 −106.1

energies are discussed, and quantum mutual entropy is calculated as well. Initial conditions
for stationary entropies and energies are obtained analytically. Section 4 studies the dynamical
entanglement measured by negativity and its correlation with entropy and energy. The
conclusion with discussions is given in section 5.

2. Hamiltonian

An effective and yet simple Hamiltonian has been proposed for the understanding of all of
the major bands with a considerable insight into the nature of the stretch-bend vibrations in
substituted methanes, that is, CHD3, CH(CF3)3, CHCl3 and CHF3. The Hamiltonian has the
following form [8–11]:

H = H0(vs, vb) + Ksbb(a
†
s abab + asa

†
ba

†
b), (1)

where H0(vs, vb) = ωs

(
vs + 1

2

)
+ωb(vb + 1)+Xss

(
vs + 1

2

)2
+Xbb(vb + 1)2 +Xsb

(
vs + 1

2

)
(vb + 1)

is the diagonal Hamiltonian, the last term in equation (1) is the non-diagonal Hamiltonian,
vs(b) is the quantum number on the stretching (bending) mode, indices s and b stand for the
degree of freedom on stretching and bending vibrations, respectively, ai and a

†
i (i = s, b) are

the annihilation and creation operators on mode i, ωi are the so-called zeroth-order vibrational
frequencies (harmonic parameters), Xss, Xbb, Xsb and Ksbb are the anharmonic parameters and
Ksbb describes the Fermi-resonance interaction between the stretch and the bend. Fermi-
resonance couples the CH-stretching and bending states that have fairly similar energies such
as |vs, vb = 0〉, |vs − 1, 2〉, |vs − 2, 4〉, . . . because the bending fundamental is about half the
wave number of the stretching fundamental in those molecules. The values of the parameters
obtained in the least squares fit to the spectra of CHD3 [8], CH(CF3)3 [9], CHCl3 [10] and CHF3

[11] are reproduced in table 1 for convenience. It is seen that anharmonic interactions (Xss,
Xbb, Xsb and Ksbb) are important for highly excited vibrations in these molecules. According
to the values of Ksbb, one can regard Fermi coupling as weak in CHD3 and strong in CHF3.
Using those parameters, Xiao and Kellman have analyzed the phase space structure and the
catastrophe map classification of vibrational spectra [24]. The extension of equation (1) to
include all vibrational modes becomes a useful model for the description of the highly excited
vibrational spectra of polyatomic molecules [25]. Details for theories of molecules are referred
to [26]. In the next section we consider the dynamical correlation between entropy and energy
for various initial states in these molecules.

3. Entropy and energy

In order to examine the dynamics of entropy and energy correlations between the stretching and
bending modes of substituted methanes, we choose the following three kinds of initial mixed
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states: mixed binomial states (MBSs), mixed thermal states (MTSs) and mixed squeezed states
(MSSs). The mixed density matrices of initial states in full system is taken to be

ρsb(0) = ρs(0) ⊗ ρb(0), (2)

where ρi(0) = ∑
vi=0 PA(vi, vi)|vi〉〈vi | is the initial density matrix of mode i. The subscript

A = B, T and S respectively represent binomial states, thermal states and squeezed states on
mode i with the coefficients being [27]

PB(vi, vi) = Ni!

(Ni − vi)!vi!
q

vi

i (1 − qi)
Ni−vi , (3)

PT (vi, vi) = 1

1 + vi

[
vi

1 + vi

]vi

, (4)

PS(vi, vi) =
{

vi !
[(vi/2)!]2cosh r

[
tanh r

2

]vi
, vi even,

0, vi odd,
(5)

where Ni = vi

qi
, 0 < qi < 1, r = arcsinh

√
vi and vi is the average quantum number on the

mode i that will be taken as a parameter in what follows. In the simulation of entropy and
energy dynamics we cut the set of Fock states that consists of the corresponding distribution
at some vt with

∑vt

vi=0 PA(vi, vi) � 1. The obtained results are further tested by adding more
Fock states to that distribution to see whether they are changed. It should be remarked that
those states can be realizable in experiments since the hybrid of field-free molecular eigenstates
[28] is created by turning on a picosecond laser pulse adiabatically.

We are interested in the entropy of the mode i given by the von Neumann entropy [29]

Ss(b)(t) = −Tr[ρs(b)(t) ln ρs(b)(t)], (6)

where ρs(b)(t) = Trb(s)ρsb(t) is the reduced-density matrix. The purity of mode s(b) is given
by Trρ2

s(b)(t). Thus, an increase in the von Neumann entropy is parallel to a decrease in purity.
The entropy of mode s(b) can be described in terms of the linear entropy

ss(b)(t) = 1 − Tr ρ2
s(b)(t). (7)

Both entropies have the same trend for a bipartite system [30] so that the results of the von
Neumann entropy are presented below. Nevertheless, it is much easier to obtain the linear
entropy analytically in some cases. The full density matrix governed by equation (1) evolves
in time with the Liouville equation:

ρ̇sb(t) = −i[H, ρsb(t)]. (8)

For the energy of a subsystem we consider the mean value of the relevant restriction of
the free Hamiltonian:

Es(b)(t) = Tr[ρsb(t)Hs(b)], (9)

where

Hs = ωs

(
vs + 1

2

)
+ Xss

(
vs + 1

2

)2
, (10)

Hb = ωb(vb + 1) + Xbb(vb + 1)2. (11)

Figure 1 shows the changes (�S = S(t)− S(0)) of the stretching and bending subsystem
entropies for CHD3 in these states with magnitudes (vs , vb) taken to be (0.003, 0.001), (0.1,
0.1) and (0.2, 0.9), as examples, where the value of q, q = qs = qb for simplicity, in the
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Δ
(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f )

(i )

Figure 1. Entropy changes (�S = S(t) − S(0)) of the stretch (solid line) and the bend (dotted
line) and energy changes (�E = E(t) − E(0)) divided by 800 cm−1 of the stretch (dashed line
with ©) and the bend (short dashed line with �) in CHD3 for MBSs (a), (b) and (c), MTSs (d),
(e) and (f ) and MSSs (g), (h) and (i) with magnitudes (vs , vb) = (0.003, 0.001) (a), (d) and (g),
(0.1, 0.1) (b), (e) and (h) and (0.2, 0.9) (c), (f ) and (i), where the value of q in MBSs is set to
0.001 (a), 0.02 (b) and 0.1 (c).

binomial states is set to be 0.001, 0.02 and 0.1, respectively. The changes (�E = E(t)−E(0))
of subsystem energies divided by 800 cm−1 are plotted in figure 1 for comparison. Similar
figures for CH(CF3)3, CHCl3 and CHF3 are available upon request. For small magnitudes
(vs , vb) = (0.003, 0.001), the evolution of entropies and energies is regular with a nice
periodicity that will be analytically explained in what follows. As the magnitudes increase,
the maximal entropy or energy increases and the fluctuation of entropies and energies becomes
more irregular. That agrees with the result of the partial entropy observed in other models
[4–6, 22]. Here we would like to discuss figure 1 in detail and mention the key difference in
entropy and energy among these molecules.

We analyze the correlations of entropies. Two qualitatively different correlations are
found in figure 1. The first type of correlation is a case where both quantities go up and down
together, and the second type of correlation is a case where they are anti-correlated, that is,
one quantity increases with time while another decreases or vice versa. It is clearly shown
that for MBSs and MTSs with small magnitudes (vs , vb) = (0.003, 0.001) both entropies are
anti-correlated in the same oscillatory frequency, which can be interpreted in terms of the
following analytic form for the linear entropy:

ss(t) = −2y1(z1 − z2)[cos(�1t) − 1], (12)

sb(t) = 2y1(z3 − z4)[cos(�1t) − 1], (13)
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where y1 = a1[p(0, 2)−p(1, 0)] with a1 = K2
sbb

�2
1

and p(vs, vb) = PA(vs, vs)PA(vb, vb), �2
1 =

[H0(0, 2) − H0(1, 0)]2 + 2K2
sbb, z1 = p(0, 0) + p(0, 1) + a1p(1, 0) + b1p(0, 2), z2 =

(1 + a1)p(0, 2) + a2p(2, 0) + b1p(1, 0) + b2p(1, 2), z3 = p(0, 0) + a1p(0, 2) + a2p(1, 2) +
b1p(1, 0) + b2p(2, 0), and z4 = p(2, 2) + a1p(1, 0) + a2p(2, 0) + b1p(0, 2) + b2p(1, 2)

with a2 = 2K2
sbb

�2
2

, b1 = [H0(0,2)−H0(1,0)]2+�2
1

2�2
1

and b2 = [H0(1,2)−H0(2,0)]2+�2
2

2�2
2

with �2
2 =

[H0(1, 2) − H0(2, 0)]2 + 4K2
sbb. With those formulas it is easy to find out that the period

(2π/�1) of entropic oscillations is determined by molecular intrinsic properties, that is, the
difference in energies H0(0, 2) − H0(1, 0) and the Fermi parameter Ksbb, while the oscillatory
amplitude is governed by molecular intrinsic properties as well as initial conditions p(vs, vb).
Using the parameters in table 1, we know that the period of entropic oscillations in CH(CH3)3

is the longest while that in CHCl3 is the shortest with the amplitude being the largest in
CHF3 and the smallest in CHD3. In addition, the amplitude of the entropic oscillation in the
stretching mode is smaller than that in the bending mode in these molecules. The entropic
evolutions are quite similar for both states since the difference in p(vs, vb) between MBSs and
MTSs is very small. The anti-correlation remains with the increasing of the magnitudes vs and
vb, as shown in figures 1(b) and (e). When the magnitudes increase further, anti-correlation
or positive correlation between both entropies occurs in an irregular manner (see figure 1(c)

as an example). That is because equations (12) and (13) are based on a simplified model with
a few states. For large magnitudes more states are needed for the corresponding distribution∑

PA(vi, vi) � 1.
For MSSs with small magnitudes (vs , vb) = (0.003, 0.001) in figure 1(g), the correlation

of entropies is dominantly positive with different oscillatory frequency. In this case the entropy
of the stretching mode is still given by equation (12) while that of the bending mode is

sb(t) = 2y2(z3 − z4)[cos(�2t) − 1], (14)

where y2 = a2[p(1, 2) − p(2, 0)]. Both entropies of equations (12) and (14) are dominantly
anti-correlated, suggesting that the entropy correlation strongly depends on the initial states.
It should be mentioned that the entropy correlation is of importance for the description of
critical phenomena [31].

We discuss the correlations of energies. For three kinds of mixed states with small
magnitudes (vs , vb) = (0.003, 0.001) both energies are given by

Es(t) = −y1(ωs + Xss)[cos(�1t) − 1], (15)

Eb(t) = y1(2ωb + 4Xbb)[cos(�1t) − 1], (16)

for MBSs and MTSs, and

Es(t) = −y2(ωs + 3Xss)[cos(�2t) − 1], (17)

Eb(t) = y2(2ωb + 4Xbb)[cos(�2t) − 1], (18)

for MSSs, where initial energies have been removed. The analytic forms of equations (15)–
(18) clearly show that both energies are anti-correlated in the same frequency for three kinds
of mixed states with the oscillatory amplitude being the largest in CHF3. The amplitude of
energy oscillation in the stretching mode is larger than that in the bending. As the magnitudes
increase, anti-correlation between both energies is dominant with the amplitude of fluctuations.
That is due to the reason mentioned above. It should be pointed out that in small magnitudes
(vs , vb) = (0.003, 0.001) numerical simulations have also been compared with the analytic
calculations of entropies and energies, and the agreement is essentially perfect.
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We study the correlation between entropies and energies. For the considered states most
entropies of the stretching (bending) mode are positively correlated with the corresponding
energies. The smaller the magnitudes in MBSs and MTSs, the more distinct such correlations,
shown in figures 1(a) and (d). However, for MSSs with a small magnitudes the entropy of
the stretching mode is dominantly anti-correlated with the energy, as shown in figures 1(g)

and (h). It is noted that the entropy and the energy of the bending mode have almost the same
behavior of evolution in figure 1(h). Those imply that the correlations between the entropy
and energy strongly depend on an initial state and a subsystem. That is helpful to understand
information and energy transfer in molecules and other models [14, 30, 32].

In order to quantitatively study the entropy correlations, we compute quantum mutual
entropy, also called the correlation index, which indicates the entropy shared between two
modes. It should be remarked that in classical information theory the mutual entropy is an
important quantity to analyze the communication processes and physical transformations.
Similarly, the quantum mutual entropy is of importance in quantum information processing
[30, 33] as well as in the study of the physics in general many-body systems [31]. Quantum
mutual entropy is defined by [33]

Sm = Ss + Sb − Ssb, (19)

where Ss and Sb are the von Neumann entropy of the stretch and the bend, respectively, and Ssb

is the von Neumann entropy of the full system. Entropy Ssb is a constant for the Hamiltonian
evolution governed by equation (1). It should be mentioned that for a pure state Ss(t) = Sb(t)

and Sm(t) = 0 [33]. Thus, the von Neumann entropy of a subsystem becomes a good measure
of entanglement only for a pure state [2–6]. It should be noted that for a mixed state both the
von Neumann entropy and the mutual entropy are not an entanglement measure. To quantify
the entanglement of a mixed state, one can choose negativity [15, 16]. The entanglement
dynamics described by negativity for mixed states in those molecules will be discussed in
section 4.

Figures 2–4 show the mutual entropies in these molecules for MBSs, MTSs and MSSs,
respectively, where the sum of corresponding energies Es and Eb is plotted for comparison.
For each state with small magnitudes (vs , vb) = (0.003, 0.001) the mutual entropies are anti-
correlated with the sums of both energies in a good periodicity, where the period in CH(CH3)3

is still the longest while that in CHCl3 is the shortest, which can be explained in terms of
above formulas (equations (12)–(18)) for each entropy and energy. Such a correlation remains
as both magnitudes increase up to 0.1. This implies that the mutual entropy is positively
correlated with the interaction energy between two modes, since the total energy is also a
constant for a given state in the Hamiltonian evolution. For MBSs with magnitudes (vs , vb) =
(0.2, 0.9) the anti-correlation between the mutual entropy and the sum of both energies is
dominant in CHD3 and CH(CH3)3 (figures 2(c) and (f )) while the positive-correlation or
anti-correlation occurs in an irregular manner in CHCl3 and CHF3 (figures 2(i) and (l)).
However, for MTSs and MSSs with (vs , vb) = (0.2, 0.9) the correlation between the mutual
entropy and the sum of both energies is dominantly positive in those molecules, as shown in
figures 3 and 4(c), (f ), (i) and (l). This indicates that for a large magnitude such a correlation
depends on an initial state and a molecule.

Finally, according to the above analytical forms (equations (12)–(18)), we obtain the
common conditions under which the amplitude of entropies and energies reduces to zero, that
is, Ksbb = 0 or p(1, 0) = p(2, 0). The latter leads to the following initial conditions:

1 − qs

Nsqs

= 2(1 − qb)
2

Nb(Nb − 1)q2
b

, (20)
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(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f )

(i )

(j ) (k) (l )

Figure 2. Quantum mutual entropy Sm (solid line) and the sum (dotted line) of two energies Es

and Eb in CHD3 (a), (b) and (c), CH(CH3)3 (d), (e) and (f ), CHCl3 (g), (h) and (i), and CHF3
(j), (k) and (l) for MBSs with the same magnitudes as in the corresponding figure 1.

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f )

(i )

(j) (k) (l )

Figure 3. Same as in figure 2 but for MTSs.
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(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f )

(i )

(j) (k) (l )

Figure 4. Same as in figure 2 but for MSSs.

vb = vs +
√

v2
s + vs, (21)

for MBSs and MTSs with small magnitudes, respectively. Thus, the partial entropy, the mutual
entropy, the energy of a subsystem and the interaction energy between two modes are not at all
changed with the evolution of time. We note that the partial density of matrix in the conditions
of equations (20) and (21) is not yet changed with time. Those are further verified through
numerical calculations with various magnitudes. We also note that the amplitude of the partial
entropies in equations (12)–(14) is zero in the condition of z1 = z2 or z3 = z4, which can be
fulfilled with a suitable molecule and state. That condition is much harsher than equations (20)
and (21). In addition, once the magnitudes in both initial states are taken to be close to those
conditions, the entropy (energy) of one mode is completely anti-correlated with the one of
another mode, which means that the mutual entropy and the interaction energy are very small.
That is an important property for MBSs and MTSs in these molecules. Special attention should
be paid to those cases when a mixed state is prepared for dynamical behaviors of entropy,
energy and others. Besides the dynamical behaviors of entropy and energy, the entanglement
dynamics of mixed states will be studied in terms of negativity in the next section.

4. Negativity

As a quantum resource for quantum computation [34], quantum dense coding [35], quantum
teleportation [36] and quantum secret protocols [37], entanglement has been extensively
investigated. Although the definition of entanglement itself is not of dynamical nature,
entangled states are often produced dynamically; that is, even if subsystems are not entangled
initially, the interaction between them generates entanglement in the system with the evolution

9
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(a)

(b)

(c)

Figure 5. Negativity in CHF3 for MBSs (solid line) and MTSs (dotted line) with magnitudes
(vs , vb) = (0.003, 0.001) (a), (0.1, 0.1) (b) and (0.2, 0.9) (c), where the value of q in MBSs is set
to 0.001 (a), 0.02 (b) and 0.1 (c).

of time. That results in several important ideas such as entanglement sudden death in the qubits
coupling with a reservoir [38], entanglement reciprocation between qubits and continuous
variables [39] and entanglement transfer from continuous variables to multiple qubits [40]. It
should be remarked that those initial states we are interested in belong to continuous variables.
It is thus necessary to explore the entanglement dynamics for those states in a molecule from
experimental spectra.

Because the von Nuemann entropy is no longer a good measure of entanglement for a
mixed state, we use negativity to quantify entanglement for its wide applicability as well as
its efficient simulation for any mixed state of an arbitrary bipartite system, in order to discuss
its dynamical correlations with the entropy and energy calculated above. Negativity of a state
ρ(t) is defined by [16]

N(t) = ‖ρT (t)‖ − 1

2
, (22)

which corresponds to the absolute value of the sum of negative eigenvalues of ρT (t), and
‖ρT (t)‖ is the trace norm of the partial transpose of state ρ(t). Partial transposition that is a
blockwise transposition of a matrix is given by

ρT
iα,jβ(t) ≡ ρiβ,jα(t), (23)

where T is the partial transposition for the second subsystem.
We have simulated the dynamics of negativity for three kinds of initially mixed states

in those molecules. As an example figure 5 shows the evolution of negativity in CHF3

for MBSs and MTSs with the same magnitudes as in figure 1. It is noted that the sudden
death of negativity happens for small magnitudes (vs , vb) = (0.003, 0.001), where the total
time of death in MTSs is longer than that in MBSs. The death of negativity means that
all eigenvalues of ρT (t) are positive, so N(t) = 0 [17] in this case. Such an important
behavior of entanglement is predicted in the qubits interacting with a reservoir [38]. Although
the negativity we considered in this case is small, it should be pointed out that all bipartite
entangled states are useful for information processing [41]. The calculation of the negative

10



J. Phys. A: Math. Theor. 43 (2010) 205301 X-W Hou et al

(a)

(d)

(b)

(e)

(c)

(f )

Figure 6. Negativity (solid line) and quantum mutual entropy (dotted line) in CHD3 (a), (b) and
(c) and CHF3 (d), (e) and (f ) for MSSs with the same magnitudes as in figure 1.

eigenvalues of ρT (t) makes it difficult to derive the analytic negativity in this case, which is
quite different from that of each entropy and energy in section 3. Nevertheless, for MSSs with
small magnitudes we are able to obtain such a form that will be given below. Contrary to the
entropy and energy discussed above, it is easy to differ MBSs from MTSs in the increasing rate
of negativity in the early time of evolution and the maximal value of negativity, both of which
are larger for MBSs. For (vs , vb) = (0.2, 0.9) the negativity in MTSs is much smaller than
that in MBSs. That is because of the property of initial states and the competition between
diagonal and non-diagonal elements of the density matrix. Once the magnitudes fulfil or be
approximate the conditions of equations (20) and (21), the time-averaged negativity for both
kinds of states is very much small. It should be remarked that for a given minimal negativity,
one can find out a region for the magnitudes centered at equations (20) and (21). Similarly, one
can locate the region for a given minimal exchange of entropy or energy. Vast calculations can
show a strong correlation between the region characterized by the minimal entropy or energy
exchange and that characterized by the minimal entanglement measured by negativity. That
extends the conclusion in the study of entropy exchange and entanglement for mixed thermal
states in the electromagnetic field in the resonant Jaynes–Cummings model [30]. Comparing
figure 5 with figures 2 and 3, we note that obvious correlations do not appear among negativity,
entropy and energy for MBSs and MTSs, nor do they for the magnitudes of interest in CHD3,
CH(CF3)3 and CHCl3.

Figure 6 shows the evolution of negativity in CHD3 and CHF3 for MSSs with the same
magnitudes as in figure 1, where the mutual entropy is plotted for comparison. For a given
magnitude the increasing rate in the early time evolution and the oscillatory amplitude of
negativity for MSSs are larger than those for MBSs and MTSs, indicating that MSSs have
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the advantage over MBSs and MTSs to gain entanglement within a shorter time. It is nicely
observed that the positive correlation between negativity and quantum mutual entropy indeed
occurs for MSSs with small magnitudes, as shown in figures 6(a) and (d). This means that
the negativity is positively correlated with the interacting energy between two modes by the
discussion in section 3. Such a correlation partly remains as the magnitudes increase up to
0.1, and it breaks down with the further increasing of magnitudes and with a strong Fermi
coupling, where figure 6(f ) is an example. For small magnitudes the negativity is explicitly
given by

N(t) = 1
2

{
p(2, 2) + a1p(0, 2)[1 − cos(�1t)]

−{{p(2, 2) − a1p(0, 2)[1 − cos(�1t)]}2

+ 2a2p(2, 0){[c1 − c1 cos(�2t)]
2 + sin2(�2t)}} 1

2
}
, (24)

where c1 = H0(1,2)−H0(2,0)

�2
. It should be mentioned that for CHD3 with weak Fermi coupling

the analytic result by equation (24) is better in agreement with numerical simulations than
that for CHF3 with strong Fermi coupling. If we set the Fermi parameter Ksbb = 0, the
negativity by equation (24) is zero as well as each entropy and energy in section 3. That
is indeed in this case for other magnitudes. It is thus clear that Fermi-resonance is critical
for dynamical entanglement and entropy (energy) exchange in these molecules. It should be
noted that although the expressions of negativity, mutual entropy and interacting energy are
quite different for MSSs with small magnitudes, they have indeed nearly the same oscillatory
frequency (�2). The positive correlation of negativity with quantum mutual entropy implies
that the mutual entropy just for MSSs with small magnitudes can be regarded as a measure of
entanglement. A similar conclusion is also found for vibrations in molecules H2O and SO2

[22]. We conjecture that such a conclusion can be applied to other systems.
It should be mentioned that quantum entanglement has suggested a different mechanism

in rationalizing proton transfer dynamics in dimers of formic acid and analogs [42]. The
feasibility of using molecular vibrational states for quantum computing [43, 44] has been
recently investigated. It is shown that the interplay of the anharmonicity and the coupling is
of prime importance in quantum computing based on vibrational qubits [44]. Furthermore,
anharmonic interactions are required for the encoded states [45]. Note that anharmonic
interactions are generic among the vibrational, or rovibrational, states of molecules. The
chosen model represents a typical one of spectroscopic Hamiltonians with harmonic and
anharmonic coupling parameters extracted from fitting to highly excited spectral experimental
results of substitute methanes. The present work can be regarded as a good alternative
with potential connections to actual experiments, other than the systems more usually used
in the field of entanglement. Thus, we believe that the studied dynamical behaviors of
negativity, entropy and energy may be useful for dynamical entanglement and molecular
quantum information processing such as quantum dense coding and quantum computing.

5. Conclusion and discussion

We have studied the dynamics of entropy, energy and negativity for Fermi coupling vibrations
in molecules CHD3, CH(CF3)3, CHCl3 and CHF3 with various initial states that are taken
to be MBSs, MTSs and MSSs. It is shown that positive correlations or anti-correlations
among entropies and energies strongly depend on an initial state and a molecule. However,
the entropy of the stretch for MBSs and MTSs with small magnitudes is anti-correlated with
that of the bend in the same oscillatory frequency, so does the energy for each kind of state
with small magnitudes, whereas entropies are positively correlated with the corresponding
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energies. Moreover, it is demonstrated that for small magnitudes quantum mutual entropies
are positively correlated with the interacting energies between two modes. The periodicity of
oscillations in entropies and energies has been analytically explained, showing that the period
in CH(CH3)3 is the longest while that in CHCl3 is the shortest. It should be noted that initial
conditions are presented for MBSs and MTSs with small magnitudes, in which the dynamical
evolutions of entropies and energies are stationary. Those are useful for information and
energy exchange [14, 30, 32].

It is still shown that the entanglement measured by negativity exhibits a sudden death for
MBSs and MTSs with small magnitudes, and the time-averaged negativity has the minimum
under the conditions of stationary entropies and energies. For a given magnitude MSSs can be
used to generate entanglement within a shorter time than MBSs and MTSs. Furthermore, for
MSSs with small magnitudes negativity is positively correlated with quantum mutual entropy
and the interacting energy, indicating that the mutual entropy can be taken as a measure
of entanglement just for MSSs with small magnitudes. Those are helpful to understand
entanglement in molecular vibrations [6, 22, 25, 26].

It is worthwhile to discuss the influence of other degrees of freedom on the behaviors
of correlation. It is possible to investigate bipartite and multipartite entanglement [46] and
quantum decoherence [47], and such an analysis is in progress.
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